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The fluctuation-dissipation relation is well known for a quantum open system with energy dissipation. In this
paper a similar underlying relation is found between the bath fluctuation and the dephasing of the quantum
open system, for which energy is conserved, but the information is leaking into the bath. To obtain this relation
we revisit the universal, but simple dephasing model with a quantum nondemolition interaction between the
bath and the open system. Then we show that the decoherence factor describing the dephasing process is
factorized into two parts, to indicate the two sources of dephasing, the vacuum quantum fluctuation, and the
thermal excitations defined in the initial state of finite temperature.
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I. INTRODUCTION

A realistic quantum system can rarely be isolated from its
surrounding environment �or called the “bath”� completely
�1,2�. When it is coupled to the bath with a large number of
degrees of freedom, decoherence happens. There are usually
two distinct decoherence effects of the bath on the quantum
system: when the energy exchange is allowed by the interac-
tion between the open system and the bath, the system en-
ergy usually dissipates into the environment irreversibly and
we name this effect quantum dissipation �3–5�; another effect
is called quantum dephasing, which occurs with no energy
exchange, but an irreversible process of information loss
happens in the considered open system �6–8�.

As to quantum dissipation, the well-known fluctuation-
dissipation relation �4,9–11� reveals to what extent the bath
fluctuation depends on the quantum dissipation process of
the open system, or how the phenomenological damping rate
is determined microscopically by the random couplings to
the degrees of freedom of the bath. As for quantum dephas-
ing, however, a similar statement for the quantum decoher-
ence only with dephasing and without loss of energy does
not exist.

This paper is devoted to finding the intrinsic relation be-
tween the pure dephasing and some random nature of the
bath. We begin with a general dephasing model for an open
system interacting with a bath of many harmonic oscillators
via a coupling of quantum non-demolition �12�. This model
is known to be universal in weak coupling limit �3�. Here, we
characterize the dynamic process of dephasing with the so-
called decoherence factor, which linearly accompanies the
off-diagonal elements of time evolution of the reduced den-
sity matrix for the system obtained by tracing over the vari-
ables of the bath. We find that the decoherence factor is a
product of two factors, one of which is determined by the
excitations of the bath while another does not vanish for the

bath initially in vacuum state. This observation clearly indi-
cates that there exist two sources of quantum dephasing,
which originate from both the vacuum quantum fluctuation
and the thermal excitations of the heat bath, respectively.

The paper is organized as follows. In Sec. II, we describe
a universal model for quantum open system interacting with
a bath of many bosons through nondemolition couplings. In
Sec. III, we show that a factorization structure appears in the
dynamic dephasing process of the quantum open system. In
Sec. IV, we present the central result of this paper, i.e., the
relation between dephasing and the fluctuation of the bath. In
Sec. V, we study the dephasing of the quantum open system
while the bath is in the thermal equilibrium state. Finally, in
the last section we conclude this paper with the remarks
about the relationship between the quantum dephasing and
the generalized thermalization due to the entanglements of
the system with the bath.

II. BOSON BATH FOR DEPHASING

In general, the quantum dephasing process is microscopi-
cally considered as the vanishing of off-diagonal elements of
the time evolution of reduced density matrix of an open sys-
tem interacting with its surrounding environment or bath of
infinite degrees of freedom. The simplest model is the com-
posite system consisting of a system interacting with the bath
of infinite bosons �3�.

The model Hamiltonian

H = HS + HI + HB

is decomposed into three parts, the system part HS, the bath
part HB=� j �� jaj

†aj with the bosonic creation �annihilation�
operators aj

† �aj� for the mode of frequencies � j

�j=1,2 , . . . � and the interaction between the quantum open
system and the bath �13�

HI = � G�
j

�� jaj + H . c . � , �1�

where we assume that �� j has the dimension of energy.
The operator-volumed coupling G depends on the system
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variables. To conserve the energy of the open system, if
dephasing can happen, the coupling is required to be of
quantum nondemolition, i.e., �HS ,HI�=0 and �HB ,HI��0, or
�HS ,G�=0. In general the considered system has N energy
levels with eigenstates �n� and corresponding eigenvalues �n
�n=1,2 , . . . ,N� �14�, i.e.,

HS = �
n=1

N

� �n�n��n� ,

G = �
n=1

N

gn�n��n� , �2�

where gn is dimensionless since �G� j has the same dimen-
sion of energy as that of �� j. The mode number N may be
infinite for a macroscopic heat bath. We assume that the sys-
tem can be embedded into a �N+1�-dimensional space with
an extended basis vector �g� such that �n�=�n

† �g� �see Fig. 1�,
where the transition operators �n= �g��n� has commutation
relations with the projection operators pn= �n��n�

��n,pm� = �mn�n. �3�

A typical example of this model is that the open system is
a single mode boson with Hamiltonian HS= ��0b†b defined
by the bosonic creation �annihilation� operator b† �b� for the
mode of frequency �0. The interaction HI= �b†b� j�� jaj

+H.c . � between the boson and the bath �15� was frequently
used to give a quantum approach for the measurement of the
boson state. It originates from the generic oscillator coupling
of the system coordinate q to the bath variables xj, i.e.,

�
j

� jqxj 	 �
j

�� jb
†aj + � jb

†aj
† + H . c . � �4�

in a large detuning limit �� j −�0 � �� j.
We can exactly solve the Heisenberg equation for the

operators �n and aj

�̇n = − i�n�n − iXgn�n,

ȧj = − i� jaj − i� j
*G �5�

with the quantum noise operator

X = �
j

�� jaj + H . c . � .

Here, the noise operator satisfies the Brownian conditions in
�X�t��=0 and �X�t��X�t���0 in an equilibrium state � and
the thermodynamic average �¯� is defined as �A�=Tr��A�.

Since G is conservable or G�t�=G�0�=G0, we explicitly
obtain

�n�t� = �n�0�e−ignZ�t�+ignF�t�G0e−i�nt,

aj�t� = e−i�jtaj�0� − i� j
*	 j�t�G0, �6�

where the phase operator in b�t� reads

Z�t� = �
j

�� j	 j�t�aj�0� + H . c . �

and 	 j�t�= i�e−i�jt−1� /� j. Then the noise operator can be ex-
pressed as a linear combination of initial operators aj�0�,
aj

†�0� and G0, i.e.,

X�t� = Y�t� − G0Ḟ�t� , �7�

where the “q-number” term

Y�t� = �
j

�� je
−i�jtaj�0� + H . c . � �8�

is due to the free evolution of the reservoir modes, and the
c-number term

F�t� = 2
 d�

�
J����t −

sin �t

�
� �9�

can be regarded as a time dependent “force” and defined by
the spectral density function of the bath

J��� = �
j

�� j�2��� − � j� . �10�

This arises from the back action of the system on the bath.

III. FACTORIZING DEPHASING PROCESS

To demonstrate the dynamic process of quantum dephas-
ing of the open system, we now calculate the reduced density
matrix for the time evolution of the open system. A pure
dephasing process means that the off-diagonal elements of
the reduced density matrix of the open system vanish, while
the diagonal elements remain unchanged in such an ideal
case. Usually the off-diagonal elements depend on both the
initial state and the dynamic variables of the bath and can
vanish in the thermodynamic limits.

We assume that the initial state of the composite system is
of the factorization form

�
�0�� = �
n

cn�n� � �
mj�� .

This means that the initial state of the open system is a su-
perposition of the eigenstates �n�=�n

† �g� while the bath is
initially in Fock state �
mj��=� j �mj�. Here mj stands for the

FIG. 1. �Color online� The energy level configuration for the
quantum open system defined within the subspace of excited states
�n� spanned by the transition operators �n= �g��n� from the ground
state �g�.
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excitation number of Fock state �mj�. Let �0�= �g� � �
0 j��,
which is invariant under the operation of the evolution
operator U�t�=exp�−iHt / � �, i.e., U�t� �0�= �0�.

Then, according to the explicit expressions �6� for opera-
tors �n and aj, the time evolution of the composite system is
calculated with a similar method in Ref. �16� as

�
�t�� = U�t��
�0�� = �
n

cn�U�t��n
†U†�t��U�t��g� � �
mj��

= �
n

cn�n
†�− t��g� � �
mj��e−i�jmj�jt

= �
n

cn�t��n� � eignZ�−t��
mj��

or

�
�t�� = �
n

cn�t��n� � ��n� . �11�

Here,

cn�t� = cne−i�nteign
2F�t�e−i�jmj�jt

and the coherent state

��n� = �
j

Dj�gn� j��mj� �12�

is defined by the displacement operators Dj���=exp��aj
†

−�*aj� with

� j = − i� j
*	 j�t� =

� j
*

� j
�e−i�jt − 1� .

From the time evolution of density matrix
��t�= �
�t���
�t�� for the composite system. we calculate the
reduced density matrix of the open system

�s�t� = �
n

cncn
*�n��n� + �

n�m

cncm
* ei
mn�t���m��n��n��m�

�13�

by tracing over the variables of the bath. Here


mn�t� = ��m − �n�t + �gn
2 − gm

2 �F�t�

is the time dependent real number.
To characterize the coherence of the quantum open

system, we use the decoherence factor �13�

Dn,m�t� = ��m��n� � �
j

Dmn�mj� . �14�

Initially, the decoherence factor Dn,m�0�=1, i.e., the system
owns a completely ideal quantum coherence. Here, each of
two factors in the decoherence factor

Dmn�mj� = �mj�Dj��gn − gm�� j��mj�

is calculated as

Dmn�mj� = e�−1/2�znm;j�t�Lmj
�znm;j�t�� �15�

in terms of the Laguerre polynomial Lmj
�znm;j�t�� of variable

znm;j�t� = �gn − gm�2�� j	 j�t��2.

With the above results, we can observe that the
decoherence factor can be decomposed into two parts, i.e.,

Dn,m�t� = Dn,m
�0� �t�Dn,m

�
mj���t� , �16�

where

Dn,m
�0� �t� = �

j

e�−1/2�znm;j�t�

originates from the vacuum quantum fluctuation of the bath
and

Dn,m
�
mj���t� = �

j

Lmj
�znm;j�t�� �17�

means the bath excitation. Actually, when the bath is initially
in the vacuum state �
mj =0��, the second factor Dn,m

�
mj���t�
becomes a unity operator since Lmj=0�x�=1. The decoherence
factor Dn,m�t�=Dn,m

�0� �t� means that the dephasing only results
from the vacuum fluctuation of the bath without thermal
excitation. When the initial state of the bath ��
mj��� is
occupied by a large amount of excitation, the macroscopic
feature of the bath �high excitations� can induce the dephas-
ing of the open system. This is because Lmj

�x� approaches the
zero-order Bessel function J0�x� when mj→� �17�. Then

Dmn�mj� = e�−1/2�znm;j�t�J0�znm;j�t�� . �18�

Since the Bessel function with real variables is a decaying
oscillating function, the decoherence factor Dn,m�t� �16� ap-
proaches zero when t tends to infinity. We will discuss how a
thermal equilibrium state can induce the fast dephasing. The
above arguments show that, even though the system energy
is conserved, there still exist the two sources of the pure
quantum dephasing induced by the bath, i.e., the vacuum
quantum fluctuation and the thermal excitations, which leak
the information of the system into the bath.

We can explicitly demonstrate these results in the continu-
ous limit. As a illustration we take Ohmic spectral density of
the bath �3,19�

J��� = ��e−�/� �19�

to make the sum in

Dn,m
�0� �t� = e−�gn − gm�2�j��j	j�t��

2/2 �20�

as a integral

�
j

�� j	 j�t��2 =
 d�J���
4

�2 sin2 �t

2
. �21�

Here, � is a dimensionless coupling constant, and � the
bath’s response frequency. When the initial state of the bath
is in vacuum state, the decoherence factor in Eq. �16�
becomes

Dn,m�t� = �1 + �2t2��−1/2��gn − gm�2�. �22�

Figure 2 shows that the decoherence factor �22�, the decay of
which is similar to an exponential decay. Actually, at short
time limit, �2t2�1, the decoherence factor �22� becomes
Gaussian decaying faction as
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Dn,m�t� = e−�t/��2
. �23�

Here the characteristic time � of the dephasing of the open
system is defined by

�−1 = �gn − gm����

2
.

IV. DEPHASING-FLUCTUATION RELATION

Now we take another approach to calculate the decoher-
ence factor, which will offer us a new angle to understand the
source of dephasing. Here, we adopt the notation of the stan-
dard deviation �A=��A2�− �A�2 for a given operator A. We
write down the decoherence factor

Dn,m�t� = �
Ij��ei��t��
Ij�� �24�

in terms of the phase difference operator

��t� = �gn − gm�Z�− t�

for the bath initially with a factorized state �
Ij��=� j � Ij�. We
denote the average �
Ij� �A � 
Ij�� by �A�.

For the small variation ���t�− ���t��� of the phase
��t� around it average ���t�� over any state we have
approximately �18�

Dn,m�t� = �ei��t�� � ei���t��e�−1/2�����t��2
. �25�

It shows that the phase fluctuation ���t� results in the loss
of quantum coherence or quantum dephasing characterized
by the decaying of the decoherence factor. For the initial
Fock state with �Ij�= �mj� we discussed in the last section,
���t��=0 and the phase fluctuation due to the bath fluctuation
can be separated explicitly into two parts, i.e.,

����t��2 = ����t��0
2 + ����t�� f

2, �26�

where the vacuum fluctuation part is

����t��0
2 = �

j

znm;j�t� �27�

and the bath excitation part

����t�� f
2 = �

j

2mjznm;j�t� . �28�

Actually the result is the same as what we have obtained
above in some cases. This is because the couplings are linear
with respect to the operators aj and aj

†. Through some simple
calculations, we obtain the decoherence factor as

Dn,m�t� = e�−1/2�����t��0
2
e�−1/2�����t��f

2
� Dn,m

�0� �t�Dn,m
�f� �t� ,

�29�

where the thermal excitation part can be rewritten as

Dn,m
�f� �t� = �

j

e−f j�mj� = �
j

e−mjznm;j�t�. �30�

When the bath is initially in vacuum state �
mj��= �
mj =0��,
f j�mj�=0. Then the decoherence factor becomes
Dn,m�t�=Dn,m

�0� �t�. Otherwise we have f j�mj��0, it means that
the decoherence factor in Eq. �29� will decay with time.

Next we consider the difference of the decoherence
factors obtained through different approaches in Eqs. �16�
and �29�, respectively. When mj and ��gn−gm�� j � /� j are all
small, i.e., the bath is setup in a low-excitation state and
coupling is weak, the Laguerre polynomial in Eq. �17� can be
approximately as

Lmj
�x� � e−mjx. �31�

Then the two decoherence factor in Eqs. �16� and �29� has
the same form. We consider the time evolution of the average
excitation number of the bath, i.e.,

NB�t� = �
j

�aj
†�t�aj�t�� = NB�0� + �NB�t� �32�

where the initial average excitation number of the bath is
NB�0�=� jmj and

�NB�t� = �G0
2��

j

�� j	 j�t��2 = �G0
2� 
 d�J���

4

�2 sin2 �t

2

�33�

is the quantum fluctuation of the bath excitation numbers,
which is independent of the initial state of the bath. In the
above equation, the term �G0

2� indicates the average of the
square of the population number of the open system. This
means

�
j

�� j	 j�t��2 =
�NB�t�
�G0

2�
. �34�

Then the decoherence factor �16� can be rewritten in terms of
the fluctuation of excitation number

Dn,m�t� � exp�−
1

2
�gn − gm�2�NB�t�

�G0
2� � . �35�

This equation shows that the decoherence factor is deter-
mined by the quantum fluctuation of bath �NB�t� and �G0

2�.
When the initial state of the open system is given, the value
of �G0

2� is fixed in the mean while. That is to say, �G0
2� is not

relevant to the source of dephasing of the open system, but

FIG. 2. �Color online� Plot of Dn,m�t� �decoherence factor� �22�
vs t �time� for various value of the coupling parameter �. �gm

−gn � =1 and �=1.
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the energy of the open system will contribute to the dephas-
ing. Thus we conclude that the quantum fluctuation of the
bath excitation characterized by �NB�t� induces the
dephasing of the open system.

V. DEPHASING IN THERMAL EQUILIBRIUM STATE

When the bath is prepared in a pure state we have found
that the dephasing-fluctuation relation for quantum dephas-
ing is similar to the well-known fluctuation-dissipation rela-
tion for quantum dissipation. Correspondingly the dephasing
process can be understood separately according to the quan-
tum fluctuation and the pure state excitation of the bath. In
this section we will show that these observations also hold
exactly for the case that the bath is initially in a thermal
equilibrium state.

For the dephasing problem of the open system at finite
temperature, the thermal equilibrium bath is described by the
density matrix

�B = �
j

e−���jaj
†aj

Tr�e−���jaj
†aj�

. �36�

Initially, the density operator of the composite system is a
direct product

��0� = �
�0���
�0�� � �B

with the initial state �
�0��=�ncn �n� of the open system. Us-
ing the coherent-state representation, the density operator
can be rewritten as

�B = �
j

 d2� j��� j��� j��� j� �37�

with the P representation for diagonal elements

��� j� =
1

��mj�
e−��j�

2/�mj�, �38�

where �mj�= �e��mj�j −1�−1 is the average excitation number
in the mode of the frequency � j.

By applying the results obtained in the previous sections,
we can calculate the reduced density matrix

�s�t� = �
n

cncn
*�n��n� + �

n�m

cn�t�cm
* �t��n��m�Dn,m

�T� �t� �39�

to characterize the quantum coherence of the open
system. Then the decoherence factor in the above equation is
factorized as �17�

Dn,m
�T� �t� = �

j

 d2� j

e−��j�
2/�mj�

��mj�
�� j�Dj�� jmn��� j�

= Dn,m
�0� �t��

j

e−gj�T�, �40�

where � jmn= �gn−gm�� j and

gj�T� =
znm;j

e���j − 1
. �41�

Figure 3 shows that the decoherence factor Dn,m
�T� �t� de-

pends on the time t and the temperature T of the bath. When
the temperature T increases, the decaying decoherence factor
will be enhanced, i.e., the open system loses its quantum
coherence.

When the temperature approaches the absolute zero de-
gree ��→ � �, we approximately have �e���j −1�−1�e−���j.
Then the decoherence factor �40� becomes

Dn,m
�T� �t� = Dn,m

�0� �t�exp�−
�gn − gm�2�t2

�2 kB
2T2� . �42�

It shows that, in the low-temperature limit, the above deco-
herence factor exponentially decays as the square of tem-
perature T2 increases, which is called Gaussian decay. When
the bath is prepared in the high temperature ���� j→0�, we
have e���j −1���� j, and then

gj�T� = �gn − gm�2 �� j	 j�t��2

� � � j
� T . �43�

It means that, when the bath approaches the high-
temperature limit, the decoherence factor �40� exponentially
decays as the temperature T increases.

In addition, Fig. 4 shows that the rise of temperature will
accelerate dephasing described by Eq. �40�.

VI. CONCLUSION WITH REMARKS

In summary, through a universal model for a quantum
open system with nondemolition coupling to the bath, we
find the intrinsic relation between the dephasing of the open
system and the quantum and thermal fluctuation of its bath.
Usually, the coupling of a quantum open system to its envi-
ronment is very complicated, and intuitively the dephasing
process should depend on the details of system-bath cou-
plings. So generally the present model used in this paper
seems to be oversimplified. However, we would like to
mention the study of Caldeira and Leggett about quantum
dissipation �3�, which proves that any bath with weak
couplings to the open system can be modeled as a collection

FIG. 3. �Color online� Plot of Dn,m
�T� �t� �decoherence factor� �40�

vs t �time� and T �temperature�. �gm−gn � =1, �=1, and �=1.

FACTORIZATION OF THE DEPHASING PROCESS IN A… PHYSICAL REVIEW E 75, 011105 �2007�

011105-5



of noninteracting bosons. As for the quantum dephasing, we
even found a similar conclusion to universally consider the
quantum dephasing problem in quantum computing �20�.
Thus the present investigation can also be considered to be
universal, and the dephasing process is generally clarified as
the two kinds of origins, the quantum fluctuation in the
vacuum and the thermal excitation in finite temperature.

Before concluding this paper, it is necessary to say some-
thing about the repletion and difference between the dynamic
dephasing process studied in this paper and the thermaliza-
tion to the thermal equilibrium induced by the bath �21–25�.
First, we have to note that the dephasing process in this
paper can describe the thermal equilibrium with the canoni-
cal state in a straightforward way. Most recently people have

revisited the investigation to explore the possibility of
replacing the equal a priori probability postulate in statistical
mechanics by a general canonical principle �21�: an arbitrary
entangling pure state of the total system consisting of the
“small” system plus “large bath” can be traced over the vari-
ables of the bath to give a generalized canonical state due to
the “large number law” or overwhelming majority of wave
functions in the subspace by obeying some global constraint
for the “universe.” Actually, if this global constraint is par-
ticularly determined by the energy interval encompassed by
the microcanonical ensemble, the above mentioned “tracing”
operation results in the thermal equilibrium distribution.
Such a thermalization process can also be described as a
typical quantum dissipation phenomenon, a dynamically
quantum process with energy exchange between the system
and the bath �2,26�. However, there is no energy exchange in
our present dephasing model and thus it gives rise to a mix-
ture rather than the thermal equilibrium distribution. Maybe
another type of global constraint exists other than the energy
interval. We believe that it is an open question, which could
be solved in a general framework. We will continue the
exploration along this line in future studies.
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